Exact Potts Model Partition Functions for Strips of the Square Lattice

نویسندگان

  • Shu-Chiuan Chang
  • Jesús Salas
  • Robert Shrock
چکیده

We present exact calculations of the Potts model partition function Z(G, q, v) for arbitrary q and temperature-like variable v on n-vertex square-lattice strip graphs G for a variety of transverse widths Lt and for arbitrarily great length Ll, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These have the form Z(G, q, v) = ∑NZ,G,λ j=1 cZ,G,j(λZ,G,j) Ll . We give general formulas for NZ,G,j and its specialization to v = −1 for arbitrary Lt in the case of free boundary conditions, as well as other general structural results on Z. The free energy is calculated exactly for the infinite-length limit of the graphs, and the thermodynamics is discussed. It is shown how the internal energy calculated for the case of cylindrical boundary conditions is connected with critical quantities for the Potts model on the infinite square lattice. Considering the full generalization to arbitrary complex q and v, we determine the singular locus B, arising as the accumulation set of partition function zeros as Ll → ∞, in the q plane for fixed v and in the v plane for fixed q. email: [email protected] email: [email protected] email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Potts Model Partition Function on Strips of the Triangular Lattice

In this paper we present exact calculations of the partition function Z of the q-state Potts model and its generalization to real q, for arbitrary temperature on n-vertex strip graphs, of width L y = 2 and arbitrary length, of the triangular lattice with free, cyclic, and Möbius longitudinal boundary conditions. These partition functions are equivalent to Tutte/Whitney polynomials for these gra...

متن کامل

Exact Potts Model Partition Functions on Wider Arbitrary-Length Strips of the Square Lattice

We present exact calculations of the partition function of the q-state Potts model for general q and temperature on strips of the square lattice of width Ly = 3 vertices and arbitrary length Lx with periodic longitudinal boundary conditions, of the following types: (i) (FBCy , PBCx) = cyclic, (ii) (FBCy, TPBCx) = Möbius, (iii) (PBCy , PBCx) = toroidal, and (iv) (PBCy, TPBCx) = Klein bottle, whe...

متن کامل

Ground State Entropy of the Potts Antiferromagnet on Strips of the Square Lattice

We present exact solutions for the zero-temperature partition function (chromatic polynomial P ) and the ground state degeneracy per site W (= exponent of the ground-state entropy) for the q-state Potts antiferromagnet on strips of the square lattice of width Ly vertices and arbitrarily great length Lx vertices. The specific solutions are for (a) Ly = 4, (FBCy, PBCx) (cyclic); (b) Ly = 4, (FBCy...

متن کامل

q-State Potts Model on Ladder Graphs

We present exact calculations of the partition function for the q-state Potts model for general q, temperature and magnetic field on strips of the square lattices of width Ly = 2 and arbitrary length Lx = m with periodic longitudinal boundary conditions. A new representation of the transfer matrix for the q-state Potts model is introduced which can be used to calculate the determinant of the tr...

متن کامل

Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice

We present exact calculations of the Potts model partition function Z(G, q, v) for arbitrary q and temperature-like variable v on n-vertex strip graphs G of the honeycomb lattice for a variety of transverse widths equal to L y vertices and for arbitrarily great length, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. denotes the number of repeated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008